
Merten’s Theorem

Though we have yet to prove any asymptotic results on π(x) we can prove
such results for weighted sums over primes.

Theorem 2.22 Merten’s Theorem As x→∞ we have

∑

n≤x

Λ(n)

n
= log x+O(1) , (16)

∑

p≤x

log p

p
= log x+O(1) , (17)

∑

p≤x

1

p
= log log x+O(1) . (18)

The last result is an improvement of Theorem 1 in Chapter 1, a lower
bound on the summation..

Proof. The integral part of y ∈ R and satisfies y − 1 < [y] ≤ y. Thus, since
Λ(n) ≥ 0 for all n, we have

∑

n≤x

Λ(n)
(x

n
− 1
)

≤
∑

n≤x

Λ(n)
[x

n

]

≤
∑

n≤x

Λ(n)
x

n
.

This can be rearranged as

0 ≤ x
∑

n≤x

Λ(n)

n
−
∑

n≤x

Λ(n)
[x

n

]

≤
∑

n≤x

Λ(n) = ψ(x) = O(x) ,

by a weak form of Chebyshev’s Theorem. Thus

x
∑

n≤x

Λ(n)

n
=

∑

n≤x

Λ(n)
[x

n

]

+O(x)

= (x log x− x+O(log x)) +O(x) ,

by Lemma 2.12. Dividing by x gives the first result

∑

n≤x

Λ(n)

n
= log x+O(1) . (19)
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For the second result, (17), we just need check that the contribution
to the sum in the left hand side of (19) from the powers of primes can be
absorbed into the O(1) error term. Split off the prime powers as in

∑

n≤x

Λ(n)

n
=
∑

pk≤x

log p

pk
=
∑

p≤x

log p

p
+
∑

pk≤x
k≥2

log p

pk
.

In the second sum here, for each prime p the range of k is 2 ≤ k ≤
(log x) / (log p). At the cost of making it larger we extend this to all k ≥ 2,
and sum the resulting geometric series as

∑

pk≤x
k≥2

log p

pk
≤
∑

p≤x

log p
∑

k≥2

1

pk
≤
∑

p≤x

log p
1/p2

1− 1/p
=

∑

2≤p≤x

log p

p2 − p
,

on summing the geometric series. At the cost of making it larger again we
extend this sum over primes 2 ≤ p ≤ x to a sum over all integers n ≥ 2.
That is,

∑

2≤p≤x

log p

p2 − p
≤
∑

2≤n

log n

n (n− 1)
= O(1)

since this is a convergent series (by comparison, for example, with
∑

n≥1 1/n
3/2

which can be summed using Corollary 2.10). Hence we get the second result

∑

p≤x

log p

p
=
∑

n≤x

Λ(n)

n
+O(1) = log x+O(1)

by using the first result.
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Finally, the method of Partial Summation gives

∑

2≤p≤x

1

p
=

∑

2≤p≤x

log p

p

1

log p

=
∑

2≤p≤x

log p

p

(

1

log x
−

(

1

log x
−

1

log p

))

=
1

log x

∑

2≤p≤x

log p

p
+
∑

2≤p≤x

log p

p

∫ x

p

dt

t log2 t

=
1

log x

∑

2≤p≤x

log p

p
+

∫ x

2

∑

2≤p≤t

log p

p

dt

t log2 t
(20)

=
log x+O(1)

log x
+

∫ x

2

(log t+O(1))

t log2 t
dt

by part ii (21)

= O(1) + log log x+O

(
∫ x

2

1

t log2 t
dt

)

.

This final integral converges, (change variables to w = log t to see this more
obviously). Thus we have the final result. �
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Merten’s Theorems extended

In Theorem 22 we proved that

∑

p≤x

1

p
= log log x+O(1) , (22)

for real x. We earlier proved

∑

n≤x

1

n
= log x+O(1) ,

which we then extended to

∑

n≤x

1

n
= log x+ γ +O

(

1

x

)

,

with the Euler-Mascheroni constant γ.

It is straightforward to extend (22) in the same way.

Theorem 2.23 There exists a constant D such that

∑

p≤x

1

p
= log log x+D +O

(

1

log x

)

as x→∞.

Proof Write Merten’s result as

∑

p≤x

log p

p
= log x+ ε(x)

where |ε(x)| < C for some constant C. Partial summation gives

∑

2≤p≤x

1

p
=

log x+ ε(x)

log x
+

∫ x

2

(log t+ ε(t))

t log2 t
dt

= 1 +O

(

1

log x

)

+ log log x− log log 2 +

∫ x

2

ε(t)

t log2 t
dt

= log log x+ 1− log log 2 +

∫ ∞

2

ε(t)

t log2 t
dt−

−

∫ ∞

x

ε(t)

t log2 t
dt+O

(

1

log x

)

.
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Here we have applied the standard method of completing the convergent
integral up to infinity. We now bound the tail end by

∫ ∞

x

ε(t)

t log2 t
dt≪

∫ ∞

x

dt

t log2 t
.

Change variables to w = log t, so dw = dt/t, and the integral becomes

∫ ∞

log x

dw

w2
=

1

log x
.

Putting this together we obtain the required result with

D = 1− log log 2 +

∫ ∞

2

ε(t)

t log2 t
dt.

�

Theorem 2.23 is saying that the following limit exists,

D = lim
x→∞

(

∑

p≤x

1

p
− log log x

)

.

The limit is of little practical help, though, in calculating D since the conver-
gence is extremely slow. It can be shown that numericallyD ≈ 0.261497212....

The Euler product
∏

p (1− 1/p) diverges (to 0). In fact, in Problem Sheet

1 you were asked to show that

∏

p≤x

(

1−
1

p

)

≤
1

log x

as x→∞. There is a more exact result,

Theorem 2.24 Merten. There exists a constant C > 0 such that

∏

p≤x

(

1−
1

p

)

=
C

log x
+O

(

1

log2 x

)

=
C

log x

(

1 +O

(

1

log x

))

as x→∞.
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Proof Taking logarithms of the finite product,

log
∏

p≤x

(

1−
1

p

)

=
∑

p≤x

log

(

1−
1

p

)

= −
∑

p≤x

1

p
+
∑

p≤x

(

log

(

1−
1

p

)

+
1

p

)

.

As noted in Chapter 1, this latter sum is dominated by

∑

p≤x

1

p (p− 1)
,

which converges. So we can complete the sum up to infinity (call it b) and
bound the error in doing so. That is,

∑

p≤x

(

log

(

1−
1

p

)

+
1

p

)

= b+
∑

p>x

(

log

(

1−
1

p

)

+
1

p

)

,

where it can be shown that b = −0.315718452... .In the last sum use the
inequality from Chapter 1,

0 < − log (1− x)− x <
x2

(1− x)

for 0 < x < 1 to get

∑

p>x

∣

∣

∣

∣

log

(

1−
1

p

)

+
1

p

∣

∣

∣

∣

≪
∑

p>x

1

p (p− 1)

≤
∑

n>x

(

1

n− 1
−

1

n

)

≤
1

x
.

Therefore

log
∏

p≤x

(

1−
1

p

)

= −
∑

p≤x

1

p
+ b+O

(

1

x

)

= − log log x−D + b+ η (x) ,

by Theorem 2.23, and where η (x) is an error term < C/ log x for some C > 0.
Exponentiate to get

∏

p≤x

(

1−
1

p

)

=
1

log x
e−D+beη(x). (23)
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What does exp (η (x)) represent? A result used in the second year analysis
course was that

|y| < 1/2 =⇒ |ey − 1| < 2 |y| .

If we demand x is so large that C/ log x < 1/2, then |η (x)| < 1/2 in
which case

∣

∣eη(x) − 1
∣

∣ < 2 |η (x)| = O

(

1

log x

)

,

that is

eη(x) = 1 +O

(

1

log x

)

.

Combine to get the stated result with C = e−D+b. �

Note

−D + b = −0.2614972128...− 0.315718452... = −0.577215664... ,

and
C = e−D+b = 0.5614594... .

You might think that −D+b looks suspiciously like −γ, where γ is Euler’s
constant, and it can be shown that this is so (but not here). This would mean
that Theorem 2.24 should really read

∏

p≤x

(

1−
1

p

)

=
e−γ

log x

(

1 +O

(

1

log x

))

.
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